首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3022篇
  免费   251篇
  国内免费   277篇
化学   706篇
晶体学   13篇
力学   110篇
综合类   56篇
数学   1945篇
物理学   720篇
  2024年   5篇
  2023年   27篇
  2022年   30篇
  2021年   44篇
  2020年   73篇
  2019年   80篇
  2018年   80篇
  2017年   98篇
  2016年   75篇
  2015年   58篇
  2014年   87篇
  2013年   281篇
  2012年   157篇
  2011年   127篇
  2010年   80篇
  2009年   136篇
  2008年   184篇
  2007年   182篇
  2006年   176篇
  2005年   151篇
  2004年   153篇
  2003年   155篇
  2002年   156篇
  2001年   100篇
  2000年   135篇
  1999年   103篇
  1998年   92篇
  1997年   85篇
  1996年   88篇
  1995年   44篇
  1994年   50篇
  1993年   39篇
  1992年   30篇
  1991年   28篇
  1990年   13篇
  1989年   26篇
  1988年   10篇
  1987年   16篇
  1986年   9篇
  1985年   12篇
  1984年   16篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   8篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1975年   3篇
  1973年   3篇
排序方式: 共有3550条查询结果,搜索用时 62 毫秒
1.
2.
3.
We construct highly edge-connected r-regular graphs of even order which do not contain r ? 2 pairwise disjoint perfect matchings. When r is a multiple of 4, the result solves a problem of Thomassen [4].  相似文献   
4.
We show that there is no (95, 40, 12, 20) strongly regular graph and, consequently, there is no (96, 45, 24, 18) strongly regular graph, no nontrivial regular two‐graph on 96 vertices, and no partial geometry pg(4, 9, 2). The main idea of the result is based on the star complement technique and requires a moderate amount of computation.  相似文献   
5.
Quasi-two-dimensional (2D) perovskites are promising candidates for light generation owing to their high radiative rates. However, strong exciton–phonon interactions caused by mechanical softening of the surface act as a bottleneck in improving their suitability for a wide range of lighting and display applications. Moreover, it is not easily available to tune the phonon interactions in bulk films. Here, we adopt bottom-up fabricated blue emissive perovskite nanoplatelets (NPLs) as model systems to elucidate and as well as tune the phonon interactions via engineering of binary NPL solids. By optimizing component domains, the phonon coupling strength can be reduced by a factor of 2 driven by the delocalization of 2D excitons in out-of-plane orientations. It shows the picosecond energy transfer originated from the Förster resonance energy transfer (FRET) efficiently competes with the exciton–phonon interactions in the binary system.  相似文献   
6.
In recent times, polyaniline (PANI), a conducting polymer, has been studied widely for environmental remediation application due to its controllable electric conductivity with high surface area, which makes it a suitable adsorbent material. But lower mechanical stability of PANI is considered to be a serious drawback for its large-scale industrial application. To improve the mechanical strength of PANI, in this study, hematite nanoparticles were impregnated onto PANI by oxidative polymerization method in order to fabricate a novel organometallic nanocomposite (hematite-PANI-NC). The hematite-PANI-NC was used as adsorbent for removal of methyl orange (MO) and eosin yellow (EY) dye from binary dye matrix under ultrasonic-assisted adsorption. Excellent MO and EY dye removal (more than 98%) was observed from binary matrix at a wide solution pH from 2.0 to 6.0, and under ultrasound wave the adsorption equilibrium was achieved within 15 min only. Both MO and EY dyes adsorption experimental data strictly followed Langmuir isotherm, and maximum monolayer adsorption capacity of 126.58 mg/g and 112.36 mg/g was observed for MO and EY dye, respectively. The uptake mechanism of MO and EY dyes onto hematite-PANI-NC is governed by electrostatic interaction, π-π bonding and hydrogen bonding between dye molecules and nanocomposite. Response surface methodology analysis reveals maximum MO and EY removal of 98.43% and 99.35% at optimum experimental conditions. This study implies that the hybrid organometallic material hematite-PANI-NC has high potential for quick and enhanced sono-assisted uptake of anionic dyes from water near neutral solution pH.  相似文献   
7.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   
8.
9.
In this work, we designed and studied a feasible dual-layer binary metagrating, which can realize controllable asymmetric transmission and beam splitting with nearly perfect performance. Owing to ingenious geometry configuration, only one meta-atom is required to design for the metagrating system. By simply controlling air gap between dual-layer metagratings, high-efficiency beam splitting can be well switched from asymmetric transmission to symmetric transmission. The working principle lies on gap-induced diffraction channel transition for incident waves from opposite directions. The asymmetric/symmetric transmission can work in a certain frequency band and a wide incident range. Compared with previous methods using acoustic metasurfaces, our approach has the advantages of simple design and tunable property and shows promise for applications in wavefront manipulation, noise control and one-way propagation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号